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The results presented here demonstrate selective learning in a
network of real cortical neurons. We focally stimulate the net-
work at a low frequency (0.3–1 Hz) until a desired predefined
response is observed 50 � 10 msec after a stimulus, at which
point the stimulus is stopped for 5 min. Repeated cycles of this
procedure ultimately lead to the desired response being directly
elicited by the stimulus. By plotting the number of stimuli
required to achieve the target response in each cycle, we are

able to generate learning curves. Presumably, the repetitive
stimulation is driving changes in the circuit, and we are select-
ing for changes consistent with the predefined desired re-
sponse. To the best of our knowledge, this is the first time
learning of arbitrarily chosen tasks, in networks composed of
real cortical neurons, is demonstrated outside of the body.
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Learning a new behavioral task is an exploration process that
involves the formation and modulation of sets of associations
between stimuli and responses. In an effort to understand the
phenomenon of learning, two different questions are asked. (1)
What are the neural mechanisms that underlie the formation and
modulation of associations? (2) What are the principles that
underlie the selection of “appropriate” associations over “inap-
propriate” ones? The nature of mechanisms underlying the for-
mation and modulation of associations has been the topic of
intense research. Although much is yet to be discovered, many
mechanisms were described, at various levels of neural organiza-
tion, that can support activity-dependent modification of associ-
ations between stimuli and responses. This study addresses the
second question, the principles underlying the selection of an
appropriate association during the learning process.

Our learning experiments were performed in networks con-
taining 10,000–50,000 cortical neurons obtained from newborn
rats (Baughman et al., 1991), under the assumption that the
organizing principles operating at the level of neuronal popula-
tions are intrinsic to neurons and are therefore manifested ex vivo.
Such cultured cortical networks were thoroughly studied by oth-
ers (Ramakers et al., 1990; Murphy et al., 1992; Maeda et al.,
1995; Canepari et al., 1997; Voigt et al., 1997; Turrigiano et al.,
1998), and a substantial amount of data has been accumulated,
showing that they are structurally rich, develop and adapt func-
tionally and morphologically over a broad range of time scales,
and are experimentally stable over weeks.

In what follows, we show that the large random cortical net-
works developing ex vivo display general properties required from
neural systems capable of learning: namely, numerous connec-
tions, stability of connections, and modifiability by external stim-

uli. We then describe closed-loop experiments in which these
biological networks interact with a computer-controlled environ-
ment and demonstrate a simple procedure for learning and mem-
orizing arbitrarily chosen tasks defined in terms of neuronal firing
patterns. Specifically, we show that, during regular low-frequency
stimulation, the network explores a large space of possible con-
nections and can be instructed to select and stabilize one or a
subset of them by withdrawing the stimulus at the point that the
connection is observed.

MATERIALS AND METHODS
Culture techniques. Cortical neurons are obtained from newborn rats
within 24 hr from birth, following standard procedures. The cortex tissue
is digested enzymatically and mechanically dissociated. The neurons are
plated directly onto substrate-integrated multielectrode array (MEA)
dishes (see below). The cultures are bathed in MEM supplemented with
5% heat-inactivated horse serum, 0.5 mM glutamine, 20 mM glucose, and
10 mg/ml gentamycin, and maintained in an atmosphere of 37°C, 5%
CO2 and 95% air in a tissue culture incubator and during the recording
phases. Half of the medium is exchanged twice per week. Experiments
are performed in the third week after plating, thus allowing complete
maturation of the neurons. Networks that did not respond (in the third
week after plating) to repeated low-frequency stimulation (1, 0.5, and 0.3
Hz) were not kept for additional experimentation.

The electrical activity of the cultured network is dependent on synap-
tic transmission; there are many published reports (Maeda et al., 1995;
Turrigiano et al., 1998; and references therein) showing that the electri-
cal activity in a cultured cortical network may be blocked by perfusion
with the NMDA receptor antagonist D-2-amino-5-phosphonovalerate
(APV) and the non-NMDA receptor antagonist CNQX. We repeated
these experiments using intracellular recordings, as well as MEA record-
ings. We find that, in the presence of a mixture of synaptic blockers
containing 5 �M bicuculline, 10 �M DNQX, and 20 �M APV, spiking
activity within the cultured network is completely abolished (Tal, 2000).

Electrophysiolog ical methods. We used the substrate-embedded multi-
electrode array technology (see Fig. 1 A) (Gross, 1994; Meister et al.,
1994). We used arrays of 60 Ti /Au/TiN electrodes, 30 �m in diameter,
and spaced 200 �m from each other [MultiChannelSystems (MCS),
Reutlingen, Germany]. The insulation layer (silicon nitride) was pre-
treated with poly-L-lysine, forming a good surface for network develop-
ment. A commercial 60 channel amplifier (B-MEA-1060; MCS) with
frequency limits of 10–3000 Hz and a gain of 1024� was used. The
B-MEA-1060 was connected to MCPPlus filter amplifiers (Alpha
Omega, Nazareth, Israel) for additional amplification (10–20�). Stimu-
lation through the MEA is performed using a dedicated eight channel
stimulus generator (MCS). The microincubation environment was ar-
ranged to support long-term recordings from MEA dishes. This was
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achieved by streaming a filtered, heated, and 95% humidified air–5%
CO2 gas mixture and by electrically heating the MEA platform to 37°C.
Data were digitized using two 5200a/526 analog-to-digital boards (Mi-
crostar Laboratories, Bellevue, WA). Each channel is sampled at a
frequency of 24,000 samples/sec and prepared for analysis using the
AlphaMap interface (Alpha Omega).

Spike detection. Thresholds (8� root mean square units; typically in
the range of 10–20 �V) are separately defined for each of the recording
channels before the beginning of the experiment. No additional spike
sorting techniques are applied for the following reason. Much of our data
and their interpretation correspond to the time scale of intraburst activ-
ities. Whole-cell recordings from single cortical neurons, both in our
hands as well as in many published records, show that the shape of an
action potential changes dramatically within bursts of activity because of
the dynamics of membrane excitability. Consequently, any attempt to
sort the spikes according to their shapes within this time scale is doomed
a priori. We were therefore forced to resort to a stricter approach that
defines elementary activities on the basis of their participation in statis-
tically significant activity pairs as explained below, in which every thresh-
old crossing is considered in the analysis. The major limitation of this
approach is that it takes more occurrences of a particular pair to define
statistical significance. This limitation was overcome by performing long
experiments.

Definition of activity pairs. We operationally define pairs of neural
connectivity in terms of an action potential A that is followed by another
action potential B, with a precise time delay (� �0.5 msec) between the
two. A and B may be action potentials recorded in the same or in
different measuring electrodes. Both events (A and B) are defined by
threshold crossing as explained above. The number of measuring elec-
trodes (Ne) dictates the maximal number of detectable pairs. Thus, for a
� � 0, the maximal number of A3B pairs is Ne2. For � � 0, the maximal
number of A3B pairs is Ne(Ne � 1); an activity cannot pair with itself
within a zero time delay.

Statistical significance of activity pairs. The statistical significance ( p
value) of a given A3B pair is calculated under binomial distribution
assumptions given the number of times A occurred, the number of times
A3B occurred with a time delay �, and the probability of event B. Thus,
if p(k) is the probability of observing k or more A3B pairs out of n A
events, and pB is the probability of a B event, then:

p�k� � �
i�k

� �n
i �pB

i �1 � pB�n�i � 1 � �
j�0

k�1 �n
j �p B

j �1 � pB�n�j

p 	 0.01 was used as a significance measure.
Functional strength of activity pairs. Given an A3B activity pair, the

forecasting of B by A, which is the strength of the functional connectivity
between the two, is given in terms of a correlation coefficient, calculated
from the number of times that the given pair appears within 1 hr, divided
by the number of occurrences of A or B (see Fig. 1 B, inset).

Stabilit y of activity pairs. For each A3B pair, statistical significance of
a change in pair co-occurrence counts was calculated under the assump-
tions of the binomial distribution (see above and Fig. 1C). For instance,
suppose that A3B pair (e.g., with � � 20 msec) appeared n1 times in the
first 0.5 hr bin and n4 times in the fourth 0.5 hr bin. To state that n4 is
significantly different from n1, we calculate the probability of finding n4 or
more events (for the case of n4 � n1) or n4 or less events (for the case of
n4 	 n1). This is done using the frequency of A3B (at � � 20 msec) in
the first 0.5 hr bin as the theoretical probability and the number of A
events in the fourth 0.5 hr bin as the number of trials. If the calculated
probability is p 	 0.01, then n4 is significantly different from n1.

Stimulation parameters. The pair of stimulating electrodes was chosen
according to its ability to induce a reverberating electrical activity of the
type shown in Figure 1, D and E, in response to a biphasic current pulse
(�50 �A or smaller, lasting 	500 �sec; 250 �sec for each phase). At
stimulation frequencies higher than 1 Hz, the networks usually inactivate
after a few pulses. Therefore, in the learning experiments, the frequency
of stimulation for a given network was set at either 1, 0.5, or 0.3 Hz, the
highest that was possible for the particular network without inactivating
its response (see Figs. 2–6). Stimulating electrodes were spatially near
each other (
200–400 �m apart).

Peristimulus time histogram construction. A series of 1200 stimuli (420
�sec, 50 �A, 0.3 Hz) was delivered through a pair of electrodes, and the
responses in 10 randomly chosen active electrodes were recorded (see

Fig. 1 E). The total number of responses (counted in 1 msec time bins)
divided by 12000 is presented, time-locked to the stimulus event.

Stimulation protocol and analysis of activity-dependent change of activity
pairs. Each network was exposed to nine stimulation sessions (see Fig.
1 F). The pattern of stimulation in each of these nine sessions was one of
the following: pattern 1, 10 min at 0.3 Hz; pattern 2, 2 min at 0.3 Hz,
followed by 8 min of no stimulation; or pattern 3, 10 min of no stimula-
tion. Each of these stimulation patterns was delivered three times to each
network, in a random temporal order. Every stimulation session was
preceded and succeeded by 100 test stimuli. For a given network, all the
stimuli, including the test stimuli, were delivered through the same pair
of electrodes. The test stimuli enabled us to define significantly occurring
activity pairs as explained above, with the prefix of each pair (A in
A3B) being the stimulus itself. Using the binomial theorem (see above
and Fig. 1 B, C), we identified activity pairs whose count changed during
stimulation patterns 1 and 2 in a statistically significant manner and
display the average number of such pairs normalized to the average
spontaneous change (pattern 3). The data shown in Figure 1 F was
obtained from testing all A3B pairs (A being the stimulus itself) with
pair time delay (�) between 0 and 100 msec, in 1 msec bins.

RESULTS
The cultured neurons form numerous synaptic connections. This
is apparent from the large number of statistically significant
correlated activities between pairs of electrodes. We operation-
ally define such pairs of neural connectivity in terms of an action
potential A that is followed by another action potential B with a
precise time delay (� �0.5 msec) between the two (see Materials
and Methods). Analysis of the spontaneous activity of the net-
work, without any stimulation, suggests that the average number
of such statistically significant A3B connections is a large per-
centage of the maximum that is possible at relatively small values
of � (Fig. 1B). As the time delay between the activities of the
elements of the pair becomes longer, the realized number of pairs
decreases. Of course, a significant occurrence of A3B connec-
tion might represent a causal relationship between the activity of
A and that of B or a noncausal correlation resulting from coac-
tivation by a common source. Furthermore, many of the observed
connections are actually parts of larger groups of significantly
connected activities. However, as we proceed, it will become clear
that, for the purposes of this study, distinctions between the
possibilities mentioned above are not crucial. Rather, the impor-
tant thing is that the number of connections is large (Fig. 1B) and
that many independent activity patterns exist. The latter is im-
plied from the fact that, in these networks, single neurons seldom
fire spontaneously without being activated by other neurons
(Maeda et al., 1995; Canepari et al., 1997) (see Materials and
Methods), whereas the average correlation between elements of
pairs is rather weak (Fig. 1B, inset). The stability of connections
in the network may be appreciated by comparing the number of
times each of the significantly occurring pairs appeared in 10
consecutive time bins (30 min each) over 5 hr of continuous
recording of spontaneous activity, without any stimulation. We
used the number of times that a given A3B activity pair ap-
peared in the first 30 min bin, divided by the number of occur-
rences of A or B as a measure for the occurrence probability of a
pair. Using the binomial theorem, we identified pairs whose count
did not change in a statistically significant manner in subsequent
time bins. Figure 1C shows that 
70% of the pairs remained
unchanged after 5 hr of spontaneous activity.

When stimulating currents are delivered through a pair of
substrate-embedded electrodes at a constant frequency, the net-
work responds by generating a rich repertoire of reverberating
electrical activities, lasting 100 msec or more (Fig. 1D,E). Mod-
ifications in functional connectivity would be manifested as
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changes in the coupling of such responses to the stimulus. Indeed,
repeated stimulation induces changes in network responsiveness,
as shown previously by others (Jimbo et al., 1999). Furthermore,
Figure 1F shows that the magnitude of such modifications in-
creases with stimulation time, reflecting the myriad activation
pathways and activity-dependent mechanisms that operate in
these networks. This “exploratory” nature (of the change in
response to series of stimuli) is further demonstrated in the data
presented below.

The analyses presented above imply that cortical networks
display general properties expected from neural systems capable
of learning: namely, numerous connections, stability of connec-
tions, and modifiability by external stimuli. We now turn to the
novel aspect of this study, which is demonstrating learning in a
cortical network without the involvement of a neural rewarding

entity. The idea is simply to stimulate the network until the
required response is attained, and once this occurs, to remove the
“driving” stimulus. We then ask how long it takes to attain the
required response. Will the appropriate responsiveness remain
stable after such a simple procedure? How selective can such a
change in connectivity be? If after the procedure the required
response to stimulus occurs reliably and selectively, this could be
considered as a form of learning.

Each experiment starts by stimulating the network through a
pair of electrodes and observing the responsiveness of all other
(i.e., the nonstimulated) electrodes. A nonstimulated electrode
that responds 50 � 10 msec after a stimulus with a response-to-
stimulus (R/S) ratio of 1/10 or less is selected. In other words,
before training, it takes at least 10 stimuli to evoke one action
potential in the selected electrode within the designated time

Figure 1. A, Large random cortical net-
works cultured on substrate-embedded
multielectrode arrays. Scale bar, 30 �m. B,
The average number (4 networks) of sig-
nificantly occurring activity pairs formed
between 10 randomly chosen active (�0.2
Hz of spontaneous activity) electrodes.
(Data are obtained from spontaneous ac-
tivity, without any stimulation.) This
number, normalized to the maximal num-
ber of possible activity pairs, is depicted
as fraction connected; � depicts the
within-pair time delay. Inset, Average
functional connectivity strength as a func-
tion of � (4 different networks; 10 ran-
domly chosen active electrodes from
each). C, Stability of neural activity pairs
over hours. Ten active (�0.2 Hz of spon-
taneous activity) electrodes were chosen
randomly. All of the occurrences of pairs
(� � 50 msec) (spontaneous activity, with-
out any stimulation) are counted in 10 0.5
hr bins. For each such time bin, the cor-
responding point in the graph shows the
fraction of pairs that their count did not
change in a statistically significant manner
( p 	 0.01) relative to their count in the
first 0.5 hr. Data were averaged over four
networks, and SD bars were added. D, A
stimulus pulse lasts 420 �sec, and its am-
plitude is 50 �A. The traces were re-
corded simultaneously from different elec-
trodes. E, Peristimulus time histogram.
The first peak represents direct activation
of neurons by the stimulus; the second
peak represents a reverberating response.
F, Stimulation-induced change in occur-
rence of activity pairs (average of 4 net-
works; data are normalized to spontane-
ous change; for details, see Materials and
Methods). Note that, as the stimulation
series become longer, more activity pairs
change (increased or decreased) the num-
ber of their occurrences. Interestingly (as
can be understood from SD error bars), it
is possible to find networks in which the
short pattern (2 min stimuli) stabilizes
pairs compared with spontaneous change
with time.
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frame of 50 � 10 msec after a stimulus. During the training phase,
the learning task is to increase the R/S of the selected electrode
to 2/10 or greater at the designated time window of 50 � 10 msec
after a stimulus. The two stimulated electrodes are continuously
stimulated at a constant frequency of 1/3, 1/2, or 1 stimulus per
second. A computer constantly monitors the R/S of the selected
electrode, and once the criterion of R/S � 2/10 is fulfilled, i.e.,
whenever two responses were seen in any 10 consecutive trials,
the computer automatically stops the stimulation. After 5 min, the
network is stimulated again (at the same low frequency) until the
criterion R/S � 2/10 in the same selected electrode is fulfilled
again. This stimulation cycle, which is composed of 5 min without
stimulation followed by low-frequency (0.3, 0.5, or 1 Hz) stimu-
lation until R/S � 2/10 criterion in the selected electrode is
fulfilled, is repeated many times. As a rule, if the criterion is not
fulfilled within 10 min of stimulation, the stimulation is stopped
for 5 min. Hence, the maximal duration of one stimulation cycle
is 15 min (i.e., 10 min of stimulation and 5 min of quiescence).
The latency for reaching the predetermined criterion (referred to
as response time) in each stimulation cycle is used as a measure
for the strength of S–R connection and may be viewed as a
measure of the degree to which the task was learned.

An example for the result of this learning procedure is shown
in Figure 2. It includes the responses of a selected electrode
before (lef t column) and after (right column) training. The 11
traces of each panel show the responses to 11 consecutive stimu-
lation pulses. Note that the activity within the 50 � 10 msec
window (depicted) is markedly increased after the training phase.

Figure 3A shows eight learning curves, differing in the learning
kinetics. In these curves, the response time (i.e., time required for
the selected electrode to fulfill the R/S � 2/10 criterion) is plotted
against the number of stimulation cycle. (Recall that each stim-
ulation cycle is composed of 5 min without stimulation, followed

Figure 2. Example of learning in a cultured network of cortical neurons.
Each trace within a panel shows recordings obtained 10 msec before the
stimulus to 70 msec after the stimulus, before (lef t) and after (right) the
training procedure. Note that the responsiveness of the electrode within
the designated time window increased appreciably.

Figure 3. A, Eight learning curves, differing in their learning kinetics.
The response time (i.e., the duration of stimuli series until criterion is
fulfilled) is plotted against the number of stimulation cycle. Each point
depicts the time (in seconds) to accomplish the task in one cycle. B, Four
control curves from a protocol in which each cycle consisted of 10 min of
stimulation and 5 min of quiescence, regardless of response (see Results).
Vertical broken lines are referred to in Figure 5.
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by low-frequency stimulation until R/S � 2/10 criterion is ful-
filled.) The curves are characterized by response time decrement
and stabilization at lower values compared with the initial values.
Note that the time required to instruct a network to perform the
task varies, reflecting the arbitrariness of the procedure by which
the tasks are chosen and the idiosyncrasies of the networks.

The notion that driving stimulus removal is necessary for
selecting appropriate network responses is further supported by a
control experiment. In this experiment, the fulfillment of the R/S
criterion in the selected electrode did not lead to stimulus re-
moval (i.e., the attainment of the criterion was ignored). The
stimulation was delivered for 10 min interrupted by 5 min of

quiescence, regardless of the responses recorded from the se-
lected electrode. Figure 3B shows that, under these conditions,
the response time (i.e., the time required for first appearance of
R/S � 2/10 within each stimulation cycle) plotted against the
stimulation cycle number shows large fluctuations and a tendency
to a decreased responsiveness over time.

Thus far, our criterion for stopping the stimulus has simply
been the appearance of a response on the selected electrode. We
refer to the eight trials that used this criterion as “simple learn-
ing” trials. To ensure selectivity of the R/S increase in the
selected electrode, we also conducted 16 trials using a second
criterion. In these trials, we monitored a second electrode in the
array, which serves as a measure for global network responsive-
ness. Our condition for removing the stimulus was that the R/S
criterion be fulfilled in the selected electrode and not fulfilled in
the second monitored electrode. We refer to these as “selective
learning trials.” Of these 16 selective learning trials, eight showed
learning (Fig. 4). In the remaining eight selective learning trials,
the latency for reaching the predetermined R/S criterion did not
relax; that is, the response times did not decrease and did not
stabilize at lower values compared with the initial values. Such
“nonrelaxing” experiments were stopped after 25 stimulation
cycles.

Figure 5 (lef t eight columns) summarizes the selective learning
data. Changes in R/S of the selected electrodes ( filled circles) and
10 control electrodes (stars) are depicted for eight experiments

Figure 4. Eight selective learning curves, differing in their learning
kinetics. The response time (i.e., the duration of stimuli series until
criterion is fulfilled) is plotted against the number of stimulation cycle.
Each point depicts the time (in seconds) to accomplish the task in one
cycle. Vertical broken lines are referred to in Figure 5.

Figure 5. Changes in R/S, depicted by f, of the selected electrode ( filled
circles) and 10 control electrodes (stars) for eight selective learning exper-
iments (lef t) and four control experiments (right) whose curves are shown in
Figure 3B. The lef t eight columns correspond to the eight selective learning
curves of Figure 4 by a lef t-to-right, top-to-bottom order. (For instance, the
selectivity data that relates to the top right curve of Fig. 4 is shown in the
second column from the lef t in this figure). For the purpose of calculating f,
the point in time that separates the period before training and that of after
training is depicted by broken lines in the curves of Figures 3B and 4. f is
normalized to the R/S change of the selected electrode.
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from eight different networks. For each network, the 10 control
electrodes were chosen by analyzing the data, after the comple-
tion of the experiment, based on their similarity to the R/S of the
selected electrode before the training; specifically, the control
electrodes are the 10 electrodes whose R/S before training were
the most similar to the R/S of the selected electrode before
training. The change, depicted by f, is defined as the ratio be-
tween the responsiveness before training and responsiveness af-
ter training, normalized to the change in R/S of the selected
electrode. Thus, f � 1 means a change in R/S that is identical to the
change measured in the selected electrode. f � 1 and f 	 1 mean
that the relevant response of a control electrode increased or
decreased, respectively, relative to the selected electrode. Note that
the strengthening in the response-to-stimulus ratio (R/S) of the
selected electrode is generally higher relative to the responsiveness

change in the control electrodes. Also note that, because the
selected and control electrodes demonstrate low responsiveness
before the training, a bias toward an average increase of R/S during
training is introduced. The reported effect is selective because the
increase in R/S of the selected electrode is more than the average
increase for the control electrodes. The probability of the selected
electrode to be ranked fourth or higher (of 11), as is the case in the
eight experiments shown, is �(4/11)8. Note that, in the control
trials ( four right columns), no preferred ranking of the selected
electrode is observed.

Figure 6 summarizes the entire data set obtained in the
above described experiments: the average control curve (curve
1), the average behavior of the entire set of trials (curve 2;
including the nonrelaxing trials), and the average learning
curve (curve 3; the combined set of simple and selective learn-
ing curves). Each point depicts the average time (in seconds) to
accomplish the task in one cycle within a series of cycles.
Figure 6 provides an indication for the robustness of the main
phenomena shown in this study: when the loop is closed and
the response is allowed to remove the stimulus, learning curves
may be obtained; when the loop is open, i.e., the computer is
instructed not to remove the stimulus when the selected elec-
trode criterion is fulfilled, the curves “explore away.”

DISCUSSION
The experiments described above show that sufficient conditions
for the realization of learning by a selection process, without the
involvement of a neural rewarding entity, are embodied in large
random networks of neurons maintained ex vivo. These networks
form a large space of connectivity configurations that are stable
over many hours. The connectivity can be modulated by external
focal stimulation in an activity-dependent manner. Most impor-
tantly, the networks explore the space of possible responses and
stabilize at configurations that remove the stimuli.

From the theoretical point of view, the above demonstration
conveys an important message, supported by behavioral studies
and psychological theories advocated over 50 years ago by emi-
nent psychologists such as Hull (1943) and Guthrie (1946): it is
not necessary to assume a separate mechanism for the biological
realization of a reward in distinction from the process of explo-
ration for solutions; the behavioral concept of reward might be
considered as a change (removal) in the drive underlying the
exploration in the space of possible modes of network response.
A drive to explore that is removed when a desired state is
achieved is an intentionless natural principle for adaptation to
rich and unlabeled environment. Of course, the fact that learning
by stimulus removal is plausible biologically does not mean that it
is implemented in real brains; however, the simplicity of this
principle makes it very likely that it does.
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