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1. Introduction

1.1 Outline

The phenomena of learning and memory are inherent to neural systems that differ from each

other markedly. The differences, at the molecular, cellular and anatomical levels, reflect the

wealth of possible instantiations of two neural learning and memory universals : (i) an

* Author to whom correspondence should be addressed.
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extensive functional connectivity that enables a large repertoire of possible responses to

stimuli ; and (ii) sensitivity of the functional connectivity to activity, allowing for selection of

adaptive responses. These universals can now be fully realized in ex-vivo developing neuronal

networks due to advances in multi-electrode recording techniques and desktop computing.

Applied to the study of ex-vivo networks of neurons, these approaches provide a unique view

into learning and memory in networks, over a wide range of spatio-temporal scales. In this

review, we summarize experimental data obtained from large random developing ex-vivo

cortical networks. We describe how these networks are prepared, their structure, stages of

functional development, and the forms of spontaneous activity they exhibit (Sections 2–4).

In Section 5 we describe studies that seek to characterize the rules of activity-dependent

changes in neural ensembles and their relation to monosynaptic rules. In Section 6, we

demonstrate that it is possible to embed functionality into ex-vivo networks, that is, to teach

them to perform desired firing patterns in both time and space. This requires ‘closing a loop’

between the network and the environment. Section 7 emphasizes the potential of ex-vivo

developing cortical networks in the study of neural learning and memory universals. This

may be achieved by combining closed loop experiments and ensemble-defined rules of

activity-dependent change.

1.2 Universals versus realizations in the study of learning and memory

Learning and memory are behavioral concepts. Studying the physiological substrates of

learning and memory requires a proper transformation of these behavioral concepts into the

language of physiology. It is generally believed that behaviors are not mapped to single spikes

generated by any one neuron, but rather to groups of spikes. These functional neural activity

groups may originate from a single neuron or from populations of neurons firing in

synchronic or diachronic manners (e.g. Edelman, 1987; Abeles, 1991). The structure of the

vast majority of behaviorally relevant neural activity groups is not predetermined by genetics,

nor dictated by some sort of an ‘all-knowing teacher ’, homunculus. Rather, neural activity

groups are formed and modulated throughout life in a dynamic, activity-dependent manner

(reviewed in Quartz & Sejnowski, 1997), conforming to evolution and environmental

constraints. The formation of neural activity groups is learning ; their conservation is memory.

The variance in the structures of neural systems within and between species, on the one

hand, and the constancy of basic behavioral phenomena of learning and memory, across

individuals and species on the other, implies that the formation and conservation of neural

activity groups is governed by a set of underlying universals. These universals may be realized

in many different ways. At present, the neurobiological experimental approach to the study

of formation and conservation of neural activity groups emphasizes specific realizations, such

as particular forms of molecular machineries [e.g. receptor-mediated intracellular signaling

cascades (Sanes & Lichtman, 1999)], particular forms of neuromodulatory effects [e.g.

dopamine as a reward signal (Schultz, 1998)] or specially arranged structures [e.g. the role of

the hippocampus in learning (Eichenbaum, 2000)]. Descriptions of specific realizations, both

microscopic and macroscopic, are invaluable, especially for diagnostic and treatment-oriented

purposes. This is true even when the action of underlying universals is unknown. Yet, as far

as comprehensive understanding is concerned, collecting facts about specific realizations is by

itself insufficient. The complexity of neural systems suggests that accumulation of such facts

may lead the field astray rather than offering a coherent large picture. We argue that to
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understand how neural substrates give rise to behavior one must understand the underlying

universals. Thereafter, hypotheses regarding specific realizations become tenable.

In neural systems, two universals of learning and memory exist. These are : (i) an extensive

functional connectivity that enables a large repertoire of possible responses to stimuli, and (ii)

sensitivity of the functional connectivity to activity, allowing for selection of adaptive

responses. In order to study the action of universals, it is desirable to have an experimental

system that allows separation of these universals from their specific realizations. However,

this is impossible since all experimental systems, in vivo and ex vivo, are constrained by specific

realizations. Thus, we are left with a problem: understanding the universals is a prerequisite

for an appropriate description of the role played by unique realizations but any attempt to set

up, i.e. realize, a ‘general ’ experimental model system may interfere with our ability to

observe the action of the universals involved. This problem is inherent to the experimental

scientific approach but can be overcome, at least partially, through selection of appropriate

experimental strategies.

2. Large random cortical networks developing ex vivo

Of the various alternatives, large random cortical networks developing ex vivo are probably

the most appropriate experimental model systems for studying the universals governing

formation and conservation of neural activity groups. These networks demonstrate extensive

functional connectivity and sensitivity of that connectivity to activity. Moreover, the

networks are relatively free of predefined constraints and intervening variables. Alternative

models, such as acute cortical slices and cultured slices allow one to explore ‘what-is-there ’,

but not ‘how-it-got-to-be-there ’. The latter question is tightly related to development, and

slices have only a limited capacity to develop.

The ex-vivo developing model system enables extensive sampling and manipulating of the

relevant variable, i.e. electrical activity. While many things can be measured in a neural

system, electrical activity is most relevant to the organization and function of networks :

processes that do not express themselves in propagation of electrical activity through the

system must be deemed secondary, even irrelevant, from the point of view of brain function

and behavioral science.

The ex-vivo developing cortical network system enables measurement procedures that

interfere little with the action of universal factors. Moreover, it allows for study over wide

range of timescales.

All these advantages led experimentalists to evaluate ex-vivo developing large random

networks as biophysical models for study of the universals that act to form and conserve

neural activity groups.

2.1 Preparation

Ex-vivo developing cortical networks are composed of cells obtained by means of mechanical

and enzymic treatment from cortices of embryonic or early postnatal animals, usually rats.

The preference for early stage cells is both mechanical and biochemical (Banker & Goslin,

1991; Higgins & Banker, 1998). In general, the later in development that cells are harvested,

the less probable it is that they will survive and adapt to a new environment. At the time of
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Fig. 1. Immense number of functional synapses connecting between neurons in the mature phase (N.

Ziv and Y. Ramati ; unpublished results, with permission). (a) A DIC image of cortical neurons in

culture. (b) Functional presynaptic boutons in the same field visualized by FM 4-64 labeling of synaptic

vesicles. Each punctum represents at least one presynaptic bouton. Note the enormous density of

synaptic connections formed in these preparations. (c) Glutamatergic synapses belonging to a single

cortical neuron in the same field visualized by expression of a fluorescent variant of the post-synaptic

density molecule PSD-95. Individual synapses are clearly discernible. Arrows point to the cell body of

the labeled neuron in all three panels.
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plating, after their extraction from the cortex, most of the neurons are round or oval, having

no axo-dentritic extensions. A typical cortical network, developing in a 20-mm diameter

culture dish, may contain up to C150000 neurons. The neurons begin to extend processes

within hours after plating (Huettner & Baughman, 1986), and proceed in culture from a

population of unconnected individual neurons, which are completely independent from each

other structurally, to a densely connected mature phase. Once mature, the network forms a

monolayer, with axo-dentritic branches that extend over 1 mm, and an immense number of

functional synapses (Fig. 1).

While some degree of cell purification can be accomplished (Higgins & Banker, 1998),

such procedures are not common in the preparation of cortical networks. Thus, the

preparation contains all the types of cells that are present in the cortex at the time of

extraction, including glial cells. Using antibody staining, it was found that the distribution

of types of cells in ex-vivo networks is similar to that found in vivo (Neale et al. 1983; Huettner

& Baughman, 1986; Nakanishi & Kukita, 2000). Thus, 10–25% are inhibitory GABAergic

cells (similar to the cerebral cortex in vivo where roughly 10–20% of neurons exhibit GAD

activity, that is, the conversion of glutamate to GABA); 2–3% are acetylcholine-synthesizing

cells (similar to the fraction of cerebral cortex cells that exhibit ChAT enzyme activity, the

synthesis of ACh, in vivo ; see Eckenstein & Thoenen, 1983; Huettner & Baughman, 1986).

A detailed study by Huettner & Baughman (1986) offers further comparisons of in-vivo and

ex-vivo morphological and physiological cellular properties, including the distribution of

subpopulation of neurons in culture.

The survival of networks depends on plating density. A typical network containing

C 150000 neurons in C 300 mm# can survive many months (Huettner & Baughman, 1986;

Gopal & Gross, 1996). Potter & DeMarse (2001) developed a technique that allows

networks to survive for over a year (see below). Comprehensive discussions about

maintenance, growth media and growth factors, may be found in Higgins & Banker (1998)

and Baughman et al. (1991), and references therein. The main phenomena described in the

present review are, by and large, independent of the exact growth conditions (including

nutrient composition of bathing medium, supplemental growth factors, or type of substrate

and container) as long as the cells under study are healthy.

2.2 Measuring electrical activity

Practically all the standard electrophysiological approaches may be exercised in studies of

large random cortical networks developing ex vivo. Studies involving single electrode

techniques serve for gathering high-resolution data about the activity of single cells and pairs

of cells. For the study of ensemble activity and its development, multi-electrode stimulation

and recording techniques are applied (Stenger & McKenna, 1994). In this case, cortical cells,

obtained as described above, are plated directly onto substrate-integrated multi-electrode

array (MEA) dishes (Gross, 1979; Gross et al. 1982; Meister et al. 1994; Stenger & McKenna,

1994). These dishes are commercially available from various sources with approximately 60

electrodes, 10–50 µm diameter each, spaced 100–500 µm from each other to allow a variety

of experiments (Fig. 2). Alternatively, the techniques involved in preparing MEA dishes are

basic, and may be applied in a standard microelectronic facility. Typical electrode-solution

impedance is ! 100 kΩ. Transparent MEA dishes allow optical access to the preparation.

The various types of insulation layers, pretreated with adhesive substrate [such as poly--
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Fig. 2. (a) A commercially available substrate integrated multi-electrode array (MEA) containing 60

electrodes (Multi Channel Systems, Reutlingen, Germany, with permission). The diameter of a single

electrode (a) and the distance between electrodes (d) range from 10–50 µm and 100–500 µm,

respectively. (b) Ex-vivo developing cortical network growing on a substrate integrated MEA (only the

four center electrodes are visible, two of which are enlarged). The exposed electrode tip occupies only

part of the circular terminal (bar¯ 30 µm). Aligned action potentials recorded from one electrode are

shown at the right. The distance between the horizontal lines depicts ³8 root mean square units, which,

for this particular electrode amounts to approximately ³7 µV (time bar¯ 1 ms). (c) (Kindly provided
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lysine, collagen or laminin (Robinson et al. 1993; Jimbo et al. 1999)], all form good surfaces

for the development of neural networks. An authoritative description of the MEA techniques

and their various uses may be found in Stenger & McKenna (1994).

In order to support long-term recordings from MEA dishes, the micro-incubation

environment must be arranged. This is achieved by, for example, a filtered, heated and

humidified air}CO
#

(95}5%) gas mixture, and electrically heated MEA platform at 37 °C.

Recently, Potter & DeMarse (In Press) developed a method for keeping cortical networks on

MEA dishes alive and stably active for over 1 year. They seal their culture chambers with a

membrane that is permeable to CO
#
and O

#
, and relatively impermeable to water vapor. By

keeping these cultures in a non-humidified incubator, they are able to greatly reduce or

eliminate problems with infection and increase in bath osmolality, while maintaining pH and

O
#

homeostasis.

A typical electrical setup includes two stages of amplification to achieve a final gain of

¬10000–40000, with frequency limits from near 200–10000 Hz (sufficient for proper spike

detection and identification). Recording electrodes may be used for passing local stimulating

currents. Data is digitized and stored for later analysis by A}D boards at a sampling frequency

of " 24000 samples per second per channel. Data can be visualized, and preliminary analysis

and reduction obtained in real-time using standard desktop computers and appropriate

software interfaces. Since the recording electrodes are surrounded by several cell bodies,

electrical activity is often picked up from several sources (typically 2–3 neurons). For some

analyses, it is necessary to separate these sources ; i.e. to assign recorded spikes to identified

single neurons. Over the past 30 years, several types of algorithms and techniques have been

optimized to allow identification of individual cells based on spike shape (Lewicki, 1998; see

also Hulata et al. 2000).

Multi-electrode recordings may be used in conjunction with other, more conventional,

means for measuring electrical activity, including patch-clamp related methods and optical

monitoring. Thus, combining the ex-vivo network preparation with a computer-based, long-

term, multi-electrode stimulation and recording techniques allows collection of a large bank

of activity and stimulation data spanning from milliseconds to weeks, over a lengthscale of

micrometers to millimeters.

3. Spontaneous development

3.1 Activity

Without exception, every ex-vivo developing cortical network shows spontaneous activity that

is first detected in the form of uncorrelated firing towards the end of the first week in culture

(Kamioka et al. 1996). At later developmental stages, single cells show activity typically

composed of sporadic action potentials and clusters of action potential, superimposed on

spontaneous voltage fluctuations around a resting potential of approximately ®60 mV

(Nakanishi & Kukita, 1998). These phenomena are observed in all networks, regardless of

by N. Ziv, unpublished results). A cortical neuron expressing EGFP growing on an MEA substrate

(arrowheads). Fluorescence image on the right is displayed using an inverted grayscale for purposes of

clarity (bar¯ 20 µm).
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the exact source from which cortical cells are extracted, or the means of measurement. Indeed,

these behaviors appear in ex-vivo developing networks originating from almost all brain

regions, not only the cortex (Van den Pol et al. 1996).

The attributes and frequency of spontaneous sporadic single spikes and synchronized

clustered activity are dependent upon the age of the network. Synchronous regular bursting

activity is mostly evident at earlier stages of network development (9–12 days in culture). A

richer pattern emerges later (22–33 days), when the network exhibits a complicated non-

periodic, synchronized, clustered activity with minute-to-minute fluctuations in the

probability of firing (Habets et al. 1987; Kamioka et al. 1996) (Fig. 3). This behavior does

not change for more than 2 months and thus represents the mature state of the network.

Maeda et al. (1995) noted that as the network matures (from 3 to 40 days), the frequency

and propagation velocity of synchronized clustered activity increases markedly (0.01–0.5 Hz

and 5–100 mm s−", respectively). There seems to be no uniquely defined ‘pacemaker ’ that

drives the network to burst ; rather, Maeda et al. (1995) show that the origin of spontaneous

bursts varies randomly with each burst, and that physical separation of a network into several

parts using a laser yields synchronous bursting activity with different frequencies and phases

in each part.

3.2 Connectivity

The spontaneous activity of the network, whether sporadic or synchronized, is correlated

with the development of synaptic connections (Van Huizen et al. 1985; Habets et al. 1987;

Muramoto et al. 1993). Thus, a rapid increase in the number of synaptic structures with a

mature appearance was observed from approximately 5–25 days using electron microscopy.

This change in physical structure coincides with the development of spontaneous electrical

activity. Indeed, increase in the frequency of synchronous clustered activity directly follows

the number of the synapses in the network (Muramoto et al. 1993). Subsequently, the process

of functional network maturation (marked by complicated non-periodic, synchronized

clustered activity with minute-to-minute fluctuations in the probability of firing) is

accompanied by an overall decline in the number of synapses that start in the fourth week and

continue for approximately 40 days (Van Huizen et al. 1985).

Synaptic potentials are detectable within 2 days in vitro (Baughman et al. 1991). Nakanishi

and colleagues have used two electrodes in the whole-cell recording mode to observe

connectivity between randomly chosen pairs of neurons in mature networks (Nakanishi &

Kukita, 1998, 2000; Nakanishi et al. 1999). They found that in C 40% of the randomly

chosen pairs an action potential evoked in one cell yields an EPSP (excitatory post-synaptic

potential) in the other cell with a mean response latency of C 4 ms and a mean amplitude of

C 4 mV (Nakanishi & Kukita, 1998). Eleven out of 22 such pairs had a response latency of

1–3 ms (corrected for conduction time). These observations led Nakanishi & Kukita (1998)

to estimate the single synaptic time delay to be C 2 ms. Taken together with estimates from

others (e.g. Jimbo et al. 1999) it is safe to conclude that in these networks at their mature

phase each neuron is mono-synaptically connected to 10–30% of all other neurons.

Nakanishi & Kukita (1998) also show that although the delay between an action potential

in a given neuron and the appearance of an EPSP in another, chosen at random, results from

1 to 10 synaptic transmission delays, no obvious relationships are apparent in distances

between pairs of cells and the synaptic delay.
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(a)

(b)

(c)

Fig. 3. Developmental changes in neuronal activity (from Kamioka et al. 1996) ; the story of four

simultaneously recorded sites. (a) Random firing observed at div 3 and transformed into bursts

separated by long intervals in the following day. The activity at div 4 indicates that the bursting does

not initiate at the same site in a ‘pacemaker ’ fashion. (b) Tightly synchronized activity appears at div

11 and changes to complicated bursting after div 21. (c) Mature firing pattern; complex high-order

patterns of spike and bursts.
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To estimate the stability of these spontaneously formed connections, we looked at the

number of times significantly occurring activity pairs, defined in terms of an action potential

that entails another action potential with a precise time delay between the two, appear in

consecutive time frames. We found that the counts of C 70% of the pairs remain unchanged

after 5 h of spontaneous activity (Shahaf & Marom, 2001). Furthermore, the stability is not

sensitive to the time delay between pair elements (G. Shahaf & S. Marom, unpublished

results), indicating the existence of mechanisms that support chains of precise propagation

(Abeles, 1991).

Experiments using both electrical and dye coupling tests support the conclusion that

neurons are not coupled through gap junctions (Nakanishi & Kukita, 1998). Coupling via

astrocytes has also been excluded. Although astrocytes are extensively coupled, they are not

coupled to adjacent neurons ; and while they do respond electrically to synchronous neural

activity, this response seems to be mediated by local neurotransmitter release from nearby

neurons (Murphy et al. 1993; however see Haydon, 2001).

4. Consequences of spontaneous activity: pharmacological manipulations

An important aspect of studies that seek to relate brain function and behavior has been the

search for principles that relate neural activity to development and modification of neural

structure to function at psychologically relevant timescales. It is generally assumed that neural

electrical activity can leave behind ‘structural traces ’, thereby changing the functional

properties of the system. The history of this idea goes back more then a century to William

James (1890) who imagined ‘ traces ’ left by ‘previous currents … deepening old paths or

making new ones ’. The theories of James, together with Thorndike’s general Law of Effect

(Thorndike, 1931) and its later rendition at the level of a single synaptic connection (Hebb,

1949), have served as the basis for an extensive and successful ongoing experimental program

for more than 50 years. Indeed, experiments performed in large random cortical networks are

found to be illuminating in this context (see below).

4.1 Structural consequences

Tetrodotoxin abolishes all electric activity in cortical networks. Picrotoxin is a GABAergic

(inhibitory) synapse blocker that disinhibits network activity. A systematic series of studies,

aimed at uncovering the structural consequences of pharmacological manipulation of activity

was conducted using tetrodotoxin and picrotoxin (Van Huizen et al. 1985, 1987a, b; Van

Huizen & Romijn, 1987; Ramakers et al. 1990; Corner & Ramakers, 1991, 1992). These

studies show that inhibition of activity by tetrodotoxin prevents network maturation: neural

outgrowth and branching is enhanced, and the large-scale elimination of synapses, that is a

hallmark of network maturation during the fourth week in vitro, is prevented (Van Huizen

et al. 1987b). In contrast, accelerated maturation occurs in networks that are chronically

disinhibited by picrotoxin (Van Huizen et al. 1987a). In other words, reducing activity

increases neural outgrowth and prevents normal synapse elimination, while enhanced activity

has just the opposite effect (Van Huizen et al. 1987a). The conclusion is that network

maturation requires spontaneous, possibly synchronous, electrical activity. If electrical

activity is inhibited, the network keeps on ‘exploring’ by outgrowth and branching.
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Van Huizen et al. (1987b) also found that persistent high synapse density maintained during

long-term inhibition of network activity by tetrodotoxin, did not progress to control mature

levels after removal of the toxin. They interpreted this finding to indicate the presence of a

‘critical period’ after which ‘bioelectrically controlled elimination of redundant connections

no longer occurs ’.

4.2 Functional consequences

The functional consequences of pharmacological manipulation of spontaneous activity were

studied by Ramakers and colleagues (Ramakers et al. 1990, 1991; Corner & Ramakers, 1991,

1992), and Kamioka et al. (1996). Corner & Ramakers (1992) considered the physiological

consequences of chronic exposure of networks to either tetrodotoxin or picrotoxin. They

reported that after removal of tetrodotoxin from the medium, the neurons fired spontaneously

in stereotyped regular clusters of action potentials. This behavior is similar to firing patterns

seen in early stages of network development and in the presence of picrotoxin. In contrast,

picrotoxin-treated, chronically disinhibited networks that were returned to normal growth

medium demonstrated a rich repertoire of firing patterns, even more extensive than age-

matched controls. Based on these and related findings Corner & Ramakers (1992) suggest

that regular neuronal activities ‘accelerate the maturation of excitatory connections … [and

are] crucial for the development of adequate inhibitory synaptic transmission’.

The dramatic changes in numbers of synapses with development raises a question

addressed by Turrigiano and colleagues (Desai et al. 1999). How do neurons, given the

limited range of possible firing rates, maintain responsiveness to both small and large synaptic

inputs? Turrigiano and colleagues show that in response to changes in overall level of activity

cortical neurons in cultured networks regulate intrinsic excitability to promote stability in

firing. Thus, neurons deprived of spontaneous activity for two days increase their sensitivity

to current input by selectively regulating voltage-dependent conductances.

Turrigiano et al. (1998) also suggest a mechanism to ensure that firing rates do not become

saturated during developmental changes in synaptic input number and strength. They show

that the cumulative strength of all of an individual neuron’s synaptic inputs increases or

decreases as a function of activity. Chronic block of activity results in increased post-synaptic

current amplitude, while drug-induced activity enhancement leads to decreased post-synaptic

current amplitude. Related to this finding, Van Huizen & Romijn (1987) report that the

‘mean size of synaptic structures depends … on the functional state of the tissue at the

moment of fixation, being larger in tetrodotoxin-silenced cultures than in bioelectrically

active ones ’. These observations are in agreement with results obtained in other neuronal ex-

vivo preparations (Rao & Craig, 1997; O’Brien et al. 1998).

In a thoughtful study, Van Ooyen et al. (1995) provide a model of activity-dependent

development of structure and function for cultured cortical networks. They show that many

of the experimental observations considered above can be imitated by a surprisingly simple

model in which neurons organize themselves into a network under the influence of their

intrinsic activity. Their model includes excitatory and inhibitory neurons, and posits that

neuritic field growth depends on individual levels of activity, and that connection between

neurons occurs when fields overlap. The model successfully reconstructs a host of seemingly

unrelated phenomena: the transition of the network from quiescence to active mode; the

transient overproduction of synapses ; enhanced outgrowth of neurites and prevention of
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synapse elimination after chronic activity block; different growth kinetics for synapses in the

shaft and in spines ; delayed onset of pruning relative to onset of activity ; advancement of

synapse elimination after chronic block of inhibitory transmission; a critical period for

synapse elimination, but not for synapse formation; and, size difference between the fields of

inhibitory (small) and excitatory (large) neurons. The importance of this analysis (Van Ooyen

et al. 1995) is in the emergence of all these phenomena without assuming predetermined,

dedicated, time-scheduled mechanisms.

5. Effects of stimulation

5.1 Response to focal stimulation

When focal stimulation is applied to a network, for example, by passing current between two

adjacent electrodes, or between an electrode and a distant reference point, the network

responds by producing a propagating wave of activity (Fig. 4). The response is built of three

clear components (Jimbo et al. 2000; Shahaf & Marom, 2001) : an early component seen

immediately following the stimulus, a refractory period, and a late component. The early

component terminates within C 20 ms, and reflects direct activation of neurons by the

stimulation. Accordingly, it is precise and reliable ; that is, spikes in this early component

appear with the same time delay relative to stimulus onset with sub-millisecond precision, and

the probability of their appearance is relatively high (Fig. 5). The early component is followed

by a period with low spike probability. While the cause for the transient quiescence is not

completely understood, it is probably related to activity-dependence of processes involved in

excitability (refractoriness) and synaptic transmission machinery (Tsodyks et al. 2000). Then

comes the late component, a ‘ reverberating wave’ that can last for hundreds of milliseconds,

and looks very similar to the synchronized spontaneous clustered activity described earlier in

the text (Section 3). The preciseness and robustness of spikes in this late component is

dramatically decreased relative to the early component (Fig. 5), indicating the underlying

participation of a multitude of alternate pathways.

5.2 Stimulation-induced changes in connectivity

The ability to drive the network to respond provides a means for studying changes in

functional connectivity induced by external stimuli. A series of recent studies by Jimbo and

colleagues (Jimbo et al. 1998, 1999; Maeda et al. 1998; Tateno & Jimbo, 1999), revealed

interesting aspects of stimuli-induced, large-scale (ensemble) changes in connectivity. Maeda

et al. (1998) used MEA recording and stimulation to observe modification of synchronized

activity in cortical cultures in response to electrical stimulation. They found that the response

of the network to a weak localized test stimulus could be potentiated by a transient strong

stimulation. This is manifested as an increased probability of eliciting synchronized bursts by

a weak stimulation, an increased frequency of spontaneous bursts and number of spikes per

burst, and increased speed of burst propagation. These effects last for at least 20 min.

Recently, Jimbo et al. (1999) reported an intriguing result that concerns stimuli-induced

changes in connectivity. First, as in the above-mentioned studies (Maeda et al. 1998; Tateno

& Jimbo, 1999), they demonstrate that local tetanic stimulation induces long-lasting

(" 30 min) changes in the responsiveness (number of spikes) of many neurons in the
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Fig. 4. A ³50 µA stimulus pulse that lasts 420 µs, delivered at the time shown by the arrow. Responses

recorded simultaneously from 14 different sites in the network. (From Shahaf & Marom, 2001.)

network. What is so interesting is that for a given site of tetanic stimulation, activated

neurons show similar changes in activity level (Fig. 6). That is, all the activated neurons either

increase their responsiveness or decrease their responsiveness to the stimulus (Jimbo et al.

1999). The result is surprising in its simplicity, especially in light of the large number of

neurons and synapses involved. Jimbo et al. (1999) conclude that ‘potentiation or depression

is pathway specific, not neuron-specific ’. They found that the initial correlation between

activity of the neurons dictated whether potentiation or depression occurred: tightly

correlated pathways became potentiated when activated; loosely correlated pathways became

depressed. The results of Jimbo et al. (1999) are a wonderful demonstration of the upgrading

of simple monosynaptic rules (e.g. Markram et al. 1997) to neural ensembles, where they still

appear to operate simply.

In another study, Tateno & Jimbo (1999) looked more closely at the temporal structure

of spike trains evoked by stimuli, and concluded that changes (potentiation or inhibition)
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(a)

(b)

Fig. 5. (a) One hundred aligned responses (recorded repeatedly from one site), to focal current stimuli

delivered in another site. Note the accuracy and reliability of the early response, probably representing

direct activation by the stimulus, compared to the ‘noisy ’ nature of the late response. (b) Peri-stimulus

time histogram (PSTH). The first peak represents direct activation of neurons by the stimulus ; the
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Fig. 6. Network activity changes induced by tetanus (from Jimbo et al. 1999). Stimulus pulse was

applied through each of the 64 sites sequentially, and the total number of spike generated in each of 72

detected neurons was counted. This procedure was repeated 10 times before and after tetanus, and the

average was computed for each case. The difference in the averages is displayed using a color map in

a 72¬64 matrix, with green indicating no change, and red–yellow and blue–black corresponding to

increased and decreased activity, respectively (color scale on left). The profiles of two example responses

to stimulation at sites (R3, C4) and (R5, C2) are plotted in the upper panel, showing that the population

of neurons responds homogeneously with increased or decreased activity, respectively. The upper right

inset shows the distribution of changes in two groups (red and blue) of 10 selected pathways, showing

that almost all stimulus pathways fall into one of two one-sided distributions : increased activity or

decreased activity. In contrast, the responses of a single cell (cell 49) to the 64 stimulus pathways show

a mixture of enhancement and depression.

were often manifested in the fine structure of spike trains and correlations between activities

that are not necessarily obvious when one looks at global statistics.

6. Embedding functionality in real neural networks

We have seen that ex-vivo developing large random networks of cortical neurons are

extensively connected. Connections may be modified by externally generated focal stimuli as

the networks develop but achieve a stable configuration. These properties (extensive

second peak represents a reverberating response. A series of 1200 stimuli is delivered through a pair of

electrodes, and the responses in 10 randomly chosen active electrodes are recorded. The total number

of responses (counted in 1 ms time bins) divided by 12000 is presented, time-locked to the stimulus

event. (From Shahaf and Marom, 2001.)
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connectivity, activity-dependence of connections, and stability) fulfill much of what is needed

in order to embed functionality into a neural system; that is, to ‘ teach’ the network to ‘do

things ’ defined in terms of spatio-temporal firing patterns. Potter and his group recently

stated their intention to meet this challenge (DeMarse et al. 2000, 2001). They interface ex-

vivo developing cortical networks grown on MEAs in a closed-loop with a computer. Spatio-

temporal patterns of activity in the cultures are used to control the behavior of a simulated

body (‘Animat ’) that could move in a computer-generated virtual world. The effect of the

interaction between Animat’s movements and the environment are fed back into the MEA

in the form of spatio-temporal electrical stimulus patterns, in real time. While at its

preliminary phase, the hope of Potter and his group is to use this system to map changes in

network activity patterns onto different Animat behaviors.

While feedback is an important component for learning, teaching the network to perform

a task requires something more. In what follows, we wish to address an issue that every

attempt to embed functionality in real neural networks must consider : the physiological

realization of the behavioral concept of a ‘ reward’, that is, the mechanism for selection of an

‘appropriate ’ stimulus-response association over other ‘ inappropriate ’ ones.

6.1 Facing the physiological definition of ‘ reward ’ : two classes of theories

In the study of learning, it is important to distinguish between two different questions : (1)

What are the neural mechanisms that underlie the formation and modulation of associations?

(2) What are the principles that underlie the selection of ‘appropriate ’ associations over

‘ inappropriate ’ ones? The mechanisms underlying the formation and modulation of

associations has been a topic of intense research, some of which has been described above in

the context of ex-vivo developing cortical networks. Although much is yet to be discovered,

there is a wealth of data at various levels of network organization regarding the function of

ion channels, receptors, synapses, axonal}dendritic architecture, and higher order structures,

that can, in principle, serve to explain activity-dependent modification of associations

between stimuli and responses. Here we focus on the second question, the principles

underlying the selection of an ‘appropriate ’ association. Psychologists handle this issue by

invoking the concept of reward, a cornerstone for many general theories of learning. We

present here our thoughts and studies that seek to realize the behavioral concept of reward

in neural systems in general, and ex-vivo developing neural networks in particular.

In recent years, considerable experimental and theoretical effort has been directed towards

identification of neural structures and mechanisms that are responsible for rewarding adaptive

behaviors (e.g. Schultz, 1998; Kalivas & Nakamura, 1999; Spanagel & Weiss, 1999; Gisiger

et al. 2000; Schultz & Dickinson, 2000). Underlying these endeavors is the notion of mapping

the behavioral concept of reward to a neural entity that strengthens a subset of synapses based

on past performance of the neural system. Another approach to the concept of reward is

related to general learning theories that were advocated by behaviorists such as Clark Hull

and Edwin R. Guthrie over 50 years ago (Hull, 1943; Guthrie, 1946). These psychological

theories, which we collectively refer to as Stimulus Regulation Principle, stress the effect of

the reward on the driving stimulus. Specifically, the reward acts to reduce the driving

stimulus, precluding the acquisition of any new stimulus–response (SR) associations. No

separate neural rewarding entity is postulated or needed for shaping behavior.



79Large random developing cortical networks

Consider, for instance, a thirsty monkey undergoing a training procedure. In order to be

rewarded by juice, the monkey is required to touch a defined area within a grid that is

projected on a touch screen. Initially, the monkey explores, performing many ‘wrong’

touches. As long as this is the situation, the monkey is not rewarded by juice. Once the

monkey performs as required, the rewarding juice is given. Now, according to the ‘reward

as a strengthening entity ’ class of theories, the juice causes some uniquely defined neural

entity to affect a subset of synapses in the brain thus increasing the chance of a similar

behavior when the same circumstances are encountered in the future. According to the

Stimulus Regulation Principle, the reward abolishes the stimulus (thirst) and therefore the

exploratory behavior of the monkey ceases ; the last associations that were made between

thirst and the experimental environment are left unaltered. No neural reward entity is

required and no active strengthening of synapses occurs after performance of the appropriate

movement.

While not mutually exclusive, the two classes of theories, in relation to reward, imply

different cellular and synaptic mechanisms. The ‘reward as a strengthening entity ’ theories

imply that there is a substance (neuromodulator) released by some neural reward entity that

is capable of modulating the efficacy of a given synapse after it has been activated.

Accordingly, recently active synapses should be in some fashion selectively available for

modulation by the rewarding neuromodulator. In contrast, the Stimulus Regulation Principle

advocates that neural connectivity changes are due to the persistence of a driving stimulus

and proceed under the direction of activity-dependent rules : an exploration process. If the

output of the system changes the driving stimulus by its removal, there is no longer a drive

for further connectivity change and the system is ‘ frozen’ in its last conformation; no specific

cellular and synaptic reward mechanism needs be postulated. In that respect, the notion of

reward under the Stimulus Regulation Principle is more primitive, whereas the ‘reward as a

strengthening entity ’ might be considered an evolved, or unique version.

6.2 Closing the loop

Timed exposure of an ex-vivo cortical network to a neuromodulator, such as dopamine, may

be a feasible means for selection of ‘appropriate ’ responses to a stimuli ; although we are not

aware of reported attempts in this direction, the ‘reward as a strengthening entity ’ class of

theories calls for such an approach. We find it attractive (and relatively easy) to test the more

primitive realization of the reward concept, the Stimulus Regulation Principle, in ex-vivo

networks. We have asked: can one drive a network by repeated stimulation to explore the

space of possible connectivity, and, then, simply by removing the stimuli, stably maintain a

particular predefined configuration? The answer to that enquiry has been ‘yes ’ (Shahaf &

Marom, 2001). Thus, we perform closed-loop experiments in which cultured cortical

networks interact with a computer-controlled environment and find that eliminating a

driving stimulus when a desired predefined response occurs is sufficient for selective learning

and memorizing of arbitrarily chosen tasks defined in terms of neuronal firing patterns.

This realization of the principle is straightforward: Each experiment starts by stimulating

a network through a pair of electrodes and observing the responsiveness of all other (i.e. the

non-stimulated) electrodes. An electrode that responds 50 (³10) ms after a stimulus with an

average response to stimulus (R}S) ratio of 1}10 or less is selected. In other words, before

training, it takes at least 10 stimuli in order to evoke one action potential in the selected
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Fig. 7. Realization of the Stimulus Regulation Principle in a MEA system.

electrode within the designated time frame of 50 (³10) ms after a stimulus. During the

training phase, the learning task is to increase the R}S ratio of the selected electrode to 2}10

or greater in the designated time window of 50 (³10) ms after a stimulus. The network is

continuously stimulated at a low constant frequency (typically 1 to "

$
Hz). A computer

constantly monitors the R}S ratio of the selected electrode, and once the criterion of R}S

& 2}10 is fulfilled the computer automatically stops the stimulation. After 5 min, the network

is stimulated again (at the same low frequency) until the criterion R}S & 2}10 in the same

selected electrode is fulfilled again. This stimulation cycle, which is composed of 5 min

without stimulation followed by low-frequency stimulation until the R}S criterion in the

selected electrode is fulfilled, is repeated many times. As a rule, if the criterion is not fulfilled

within 10 min of stimulation, the stimulation is stopped for 5 min. Hence, the maximal

duration of one stimulation cycle is 15 min (i.e. 10 min of stimulation and 5 min of

quiescence). The latency for reaching the predetermined criterion (referred to as response

time) in each stimulation cycle is used as a measure for the strength of SR connection, and

may be viewed as a measure of the degree to which the task was learned. The closed-loop

design is schematized in Fig. 7.

An example of a result of this learning procedure is shown in Fig. 8. It includes the

responses of a selected electrode before (left column) and after (right column) training. The

11 traces of each panel show the responses to 11 consecutive stimulation pulses. Note that

the activity within the 50 (³10) ms window (depicted) is markedly increased after the

training phase.

In order to ensure selectivity of the R}S ratio increase in the selected electrode, we amend

the procedure by concomitantly monitoring a second electrode in the array, which serves as
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Before training After training

Fig. 8. Example of learning in a cultured network of cortical neurons. Each trace within a panel shows

recordings obtained 10 ms before the stimulus to 70 ms after the stimulus, before (left) and after (right)

the training procedure. Note that the responsiveness of the electrode within the designated time

window increased appreciably. (From Shahaf & Marom, 2001.)

a measure for global network responsiveness. The idea is to ensure selectivity by removing

the stimulus only if the fulfillment of the R}S criterion in the selected electrode is not

accompanied by similar increase in the responsiveness of the second electrode. Figure 9 (first

eight columns) summarizes the selective learning data. Changes in R}S ratio of the selected

electrodes (filled circles) and 10 control electrodes (stars) are depicted for eight experiments

from eight different networks. For each network, the 10 control electrodes were chosen by

analyzing the data, after the completion of the experiment, based on their similarity to the

R}S ratio of the selected electrode before the training. The change, depicted by f, is defined

as the ratio between the responsiveness before training, and responsiveness after training,

normalized to the change in R}S ratio of the selected electrode. Thus, f¯ 1 means a change

in R}S ratio that is identical to the change measured in the selected electrode. f" 1 and f! 1

mean that the relevant response of a control electrode increased or decreased, respectively,

relative to the selected electrode. Note that the strengthening in the R}S ratio of the selected

electrode is generally higher relative to the responsiveness change in the control electrodes.

Also note that since the selected and control electrodes demonstrate low responsiveness

before the training, a bias towards an average increase of R}S ratio during training is

introduced. The reported effect is selective inasmuch as the increase in R}S ratio of the
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Fig. 9. Changes in the R}S ratio, depicted by f, of the selected electrode (filled circles) and 10 control

electrodes (stars) for eight learning experiments (left) and four control experiments (right). Control data

is from protocols in which each cycle consisted of 10 min of stimulation and 5 min of quiescence,

regardless of response (see main text). f is normalized to the R}S change of the selected electrode.

(From Shahaf & Marom, 2001.)

selected electrode is more than the average increase for the control electrodes. The probability

of the selected electrode to be ranked fourth or higher (out of 11), as is the case in the eight

experiments shown, is ! (4}11)).

Figure 10 shows three learning curves [(i), (ii), (iii)], differing in learning kinetics. In these

curves, the response time (i.e. time required for the selected electrode to fulfill the R}S

& 2}10 criterion) is plotted against the number of stimulation cycles. (Recall that each

stimulation cycle is composed of 5 min without stimulation followed by low-frequency

stimulation until R}S & 2}10 criterion is fulfilled.) The figure demonstrates that the time

required to instruct a network to perform the task varies, reflecting the arbitrariness of the

procedure by which the tasks are chosen and the idiosyncrasies of the networks. This

variability faithfully represents the spectrum of learning curves observed in our networks.

Figure 10(iv) shows the average of 16 learning curves. Each point depicts the average time

(in seconds) to accomplish the task in one cycle within a series of cycles.
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(i) (ii) (iii)

(iv)

Fig. 10. (Modified, from Shahof & Marom, 2001.) Three learning curves [(i), (ii), (iii)], differing in their

learning kinetics. The response time (i.e. the duration of stimuli series until criterion is fulfilled) is

plotted against the number of stimulation cycles. Panel (iv) shows the averaged learning curve (stars ;

n¯ 16) and control curve (squares ; n¯ 4). Each point depicts the average time (s) to accomplish the

task in one cycle within a series of cycles.

The notion that ‘driving’ stimulus removal is necessary for selecting ‘appropriate ’

network responses, is further supported by a control experiment that is also presented in

Fig. 10 : in this experiment, the fulfillment of the R}S criterion in the selected electrode did not

lead to stimulus removal (i.e. the attainment of the criterion was ignored). The stimulation

was delivered for 10 min interrupted by 5 min of quiescence, regardless of the responses

recorded from the selected electrode. Figure 9 (last four columns) shows the change in the

R}S ratio of the selected and control electrodes in four such experiments. Without exception,

learning does not occur if the ‘appropriate ’ response does not remove the stimulus.

Moreover, the response time (i.e. the time required for first appearance of R}S &2}10 within

each stimulation cycle) plotted against the stimulation cycle number shows large fluctuations.

Figure 10(iv) shows the averaged control curve (n¯ 4). Taken together with the average

learning curve, the graphs of Fig. 10(iv) provide an indication for the robustness of the
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phenomena: when the loop is closed and the response is allowed to remove the stimulus,

learning is obtained; when the loop is open, i.e. the computer is instructed not to remove the

stimulus when the selected electrode criterion is fulfilled, the curves ‘explore away’.

The neural substrates for learning in these networks are synchronous bursts of activity

evoked by driving stimuli. As shown above (Fig. 5), the timing at which spikes appear within

an evoked burst are precise and robust at first, but become compromised at the late phase of

the burst. We suggest that the ‘noisy ’ nature of spike timing in the later, influences the

synchronization between neurons to produce changes in the efficacy of synapses and serves

as a substrate for functional changes in the network. Regardless of the exact mechanism, such

experiments show that conditions sufficient for learning by a selection process can be realized

without the involvement of a neural rewarding entity and are embodied in large random

networks of neurons developed and maintained ex vivo. From the theoretical point of view,

such results convey an important message, supported by behavioral studies and psychological

theories advocated over 50 years ago by psychologists such as Hull and Guthrie : it is not

necessary to assume a separate mechanism for the biological realization of a reward and the

process of exploration for solutions ; the behavioral concept of reward might well be

considered as a change in (or removal of ) the drive underlying the exploration of possible

modes of response. Stimulus removal is an intentionless natural principle to allow adaptation

to a rich and unrestricted environment.

7. Concluding remarks

Here is a dream: imagine thousands of cortical neurons on a plate, developing ex vivo to

produce a large, highly connected network that survives for months on the experimental

setup. The network continuously and seamlessly interacts with the world via electronics and

computers that allow timed local electrical stimulation and application of neuromodulators.

Using these timed stimuli and drug applications we attempt to teach the network to respond

to defined electrical stimuli with defined sets of action potentials distributed in time and space.

We then interrogate the system, asking: what is required to teach the network to ‘do things ’?

How many ‘ things ’ can the network learn to do? At what level of complexity? What does

one gain by increasing the number of cells in the network? The number of connections? The

types of connections? Can the ‘knowledge’ of such network be represented? Can one identify

rules of change and development? Can one use such rules, together with the representation

of present ‘knowledge’, in order to drive the network from a present ‘undesirable ’ state to

another ‘desirable ’ one at will ? Is there a critical period for teaching the network to do

‘ things ’? How does ‘ forgetting’ occur? Can one use methods of training, or drugs, to

enhance performance, to make the network learn faster, and to delay forgetting? What does

one gain by separating the network to morphologically distinct modules, by restricting its

morphology to well-defined structures, in short, by introducing anatomy?

This review suggests that we are not that far from realizing the dream: ex-vivo developing

large random networks can survive for many months. Bio-electronic interfaces exist, allowing

real-time bi-directional interaction between the network and the world (e.g. DeMarse et al.

2001). A basic protocol for teaching the networks to express desired responses is available

(Shahaf & Marom, 2001) and, most importantly, the ability to characterize rules of changes

in connectivity, at the level of neural ensembles, has been demonstrated (e.g. Jimbo et al.

1999).
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However, the most interesting part of the work is still ahead. Our conviction is that, at this

point in time, efforts to understand the action of general neural factors underlying behavior

should be addressed towards : (1) establishing a useful characterization of network ‘state ’ at

the ensemble level ; (2) extending the characterization of activity-dependent rules of

connectivity change at the level of neural ensembles ; and, (3) harnessing such ensemble-level

rules and characterization of state, together with various physiological realizations of the

reward concept, endeavor to teach networks to perform more complex tasks. Thereafter we

may be ready to address questions that relate to complex features found in native neural

systems. These questions are of a general nature, and they are most relevant to the entire

brain-behavior endeavor. Answering these questions should be the business of biophysicists,

and not just neuroscientists and psychologists, as biophysics is concerned with describing

general principles of organization in the biological world, and understanding the universals

underlying formation and conservation of neural activity groups in networks is such a

challenge. We hope that this review will encourage biophysicists to direct their attention and

resources to this subject.
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