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The NEUROBIT project

e The brain is perhaps the most advanced and robust computational
system known.

e We are developing a method to study how information is
processed and encoded in living cultured neuronal networks by
interfacing them to an artificial body.

Bioartificial living system Real environment
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Autonomous Robot:
Controller the artificial body

V. Sanguineti, F.A. Mussa-lvaldi et al. - Connecting Brains to Robots: An Artificial Body for studying the Computational
Properties of Neural Tissues. Artificial Life, 6(4): 307-324, 2000.

S. Potter - The neurally controlled Animat: Biological Brains acting with simulated bodies, Autonomous Robots, 71, 2001
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The rationale of the project

Activity-dependent modification of synaptic efficacy is widely recognized as

a cellular basis of learning, memory and developmental plasticity
(Meister et al., Science, 252:939-943, 1991; Katz and Shatz, Science, 274: 1133-1138, 1996)

Stimulation leads to the activation/modulation of a neuronal ensemble

The way neurons process information is distributed and redundant

Main objectives

To interface in-vitro neurons stably to microelectronic transducers, that
allow to monitor and modulate the neuron electrophysiological activity

To study learning and plasticity in in-vitro models

Bioartificial neuronal networks - Bioartificial living systems
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Our goal:

to sfable interface in-vitro neurons to microelectronic transducers
capable to monitor and modify the neuron electrophysiological activity

»to stfudy learning and plasticity in in-vitro-models

e Bioartificial neuronal nefworks p bioartificial living systems

A sfep forward... with many possible implications

to understand and exploit brain plasticity in order to improve
brain-computer interfaces, to inspire new computer
architectures, and to advance basic neuroscience
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Molecules

Single neuron

Microcircuit:
Couple of neurons
synaptically connected

Brain mapping and
control system

Behaviour

Neurobit
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The NEUROBIT project

A bioartificial brain with an artificial body: training a cultured neural tissue to
support the purposive behavior of an artificial body (started May 1st, 2002)

Bioartificial living system Real environment
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Autonomous Robot: the artificial
body
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technologies,

How to do that?

Methodological approach oy
* NN dynamics characterization (i Flafactericaticn BhdSe
= Electrical/chemical stimulation 2. Training and conditioning
= |nput-output channel selection phase
 Coding and de-coding strategies 3. Application phase (closed
loop)
Techniques
* Reliable mini-incubating systems e
* Newly designed microtransducers ®
(i.e. Micromachined MEAs with clusters) &
e 4
k!:’!

 “Real-time” closed loop system
TRAINING, LErRNING

Sensory
processing

Stimulation
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In-vitro nevuronal networks

Cortical neurons form rat embryo (E17-18)
cultured on MEA substrate (15-30 DIV)

TiN electrodes on glass
substrate (30 um diam.,
200 um spaced)

MultichannelSystems —
Reutlingen (Germany)
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Techniques

Mini Neurophysiological Lab (NML)

Micro transducer device (MTA) :

% Jfﬁfﬁfﬁﬁf:ﬁfﬁfﬁﬁw I Optical culture

Local delivery %Z{ image

External chemical
stimulus

channels

External electrical Electrophysiological

i //ﬁ electrodes / i
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activity
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—> CO, IN I pH measure
I Incubator .
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; Cooling : ________________ |

____________________________



Neuro-IT workshop — Alicante 8 July 2003

Techniques

PCB compatible with the
multichannel connector

MTA (wire-bonded and glued)
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Reservoir (Glass, PS, PMMA)

5cm

Delivery channel —

Electrode array —|
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mini-incubator - design

PCB compatible with the
A
= Multichannel connector

7 — -
/ u P MTA (wire-bonded and

glued) |
| ___— glass reservoir

. chamber (PMMA)
|7 T sensors

| BOO T s

5cm
< > semi-permeable mini-incubator - prototype

membrane (teflon

................................. 5l

5cm
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NN Characterization

Electrical stimulation protocol

Stimulation parameters have been adapted from literature

Jimbo et al. Simultaneous Induction of Pathway-Specific Potentiation and Depression in Networks of Cortical
Neurons, Biophysical Journal 76, 1999.

Shahaf and Marom, Learning in Network of Cortical neurons, The Journal of Neuroscience 15, 2001

Spontaneous activity (5 min. recording)
Train of biphasic pulses, 0.2-0.4 Hz, + 1-2V (5 - 7 minutes)
10-30 stimulating sites (60 electrodes)

Experiments performed at different DIV: 15-30
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EXP - Spontaneous activity
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Preliminary results
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= Results

Two visuadlly-identified responses to the stimulus: early and delayed burst
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Post Stimulus histograms (PSTH) for
the same 2 recording sites (56 and
/7). only the “early” response is

present
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Resulis

PSTHs averaged on 15 recording electrodes

Mean PSTH - stimulation electrode n® 14

Mean PSTH - stimulation elecirode n® 12 Mean PSTH - stimulation electrode n® 16
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Input-output channels selection

e The network response is stimulus-dependent, since different
stimulating sites evoke different responses (“distinct patterns” or
“states”) on the same recording electrodes.

e The network characterization algorithms (IBIH, PSTH) can provide a
tool for identifying the recording and stimulating sites candidates to
become the “input” sensory channels and the “output” motor
channels of our bioartificial neuronal system.
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Bi-directional connection and closed-
loop experiments

As a closed-loop experiment, we focus on a simple
‘Braitenberg vehicle’ that (learns to) avoid obstacles. The
robotic body is a Khepera II, with two wheels and eight
infra-red (IR) proximity sensors, which moves inside a
circular playground, containing a number of obstacles.

Selectivity of population activity to the site of stimulation
points to spatial coding of information. Therefore, we
defined separate ‘motor’ and ‘sensory’ areas. We used two
separate sets of recording sites to control the left and right
wheels of the robot
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A possible model

e Neuron package environment

» 64 Neurons. HH neurons, noisy
leaky

» Spontaneous activity
> 35% of inhibitory synapses.
> 3,5 connections for each neuron.

Bessee
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Defining sensor and motor areas

0.22
0.2

* Motor layer is used to oo
generate the robot '
movement

e Hidden layers randomly
connected.

e Sensory layer receive
information from the robot
sensor. A sensory vector is
generated.

ePopulation vector coding

BHESES

-0.50
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Associative (delta) learning algorithm
e Sensory vector and motor vector are not within the same

quadrant : REDUCTION of synaptic weights

e Sensory vector and motor vector are within the same quadrant :
INCREASE of synaptic weights

Before learning After learning

56 50

/Y?
p
50 — 50 -
|9y,

50 150 150 \._.50
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Decoding of Neuronal Signals

* Pre-processing (spike detection)

» Selection of a N-dimensional subset of the 60 channels that will be
used to generate motor commands

 Estimation of an index of neural activity intensity U(t), i=1,...,N
 Array of leaky integrators (first-order low-pass filters with a 100 ms
time constant)

SPIKE TRAINS

» Decoding strategy based on population coding 0 1 2 3 4

» Two separate subsets of the recording sites control left and right TIME [s]
wheels of the robot

» Each recording electrode is assigned a ‘preferred’ motor command
(e.g., angular speed, direction of motion) chosen according to a
topographic rule

* The control command is computed as a normalized and weighted
sum

« Advantages: the weighted sum prevents each control signal from
getting too big in case of prominent bursting activity recorded by the
electrodes coding for one of the two sides

DECODING

SPEEDS OF WHEELS

0 1 2 3
TIME [s]

SN
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» Sensory system: six IR proximity sensors (the two on the back
are not used); Let u(t), i = 1,...,6 be sensor activity

« Coding scheme based on Gaussian-shaped receptive fields:
for each stimulation site, i = 1,...,M, choice (arbitrary) of a ‘preferred’
stimulus direction d

+ Stimulus intensity, i.e. s(f), i = 1,...,M, is computed as:

s(t) = ieﬂ\dj ~d|)-u,(t)= 26:@, u,(t)

where d; are the actual sensor directions; this allows to encode
sensory information into an arbitrary number of stimulation sites

» Generation of spike trains with Poisson probabilistic distribution:

» For each stimulation channel, generate a uniformly distributed
number x_between 0 and 1 (n is time step, ot is sampling time)
* Generate a spikeif x_ <s .ot
(this is only appropriate when s, - 6t << 1)
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Encoding of Sensory Information
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e System Architecture: preliminary version

Present architecture

« PC1: Data Logger
» Acquisition of neural signals from MEAs
* Recording of Raw Data MCS MEAS
+ PC2: Spike detection NS |
» Acquisition of neural signals from MEAs
» Spike detection
* PC3: Closed-loop control
» Acquisition of spike trains and generation of
control signals (sent to robot via RS232)
* Recording of sensory signals (RS232) and
generation of neural stimulation patterns
* PC4: Experiment front-end

N

indows 2000
MCS card

CS software

indows 2000

NN\PCI-6071E
15.5

xPC Targej kernel

I I NI 6025E

\ ¥
< :
<(S|auueq:> 09) snq 6ojeuy

Stimulator PC3 *

Preliminary Tests I TCP/IP
1. Open-loop runs with simulated/actual robot, :
: Khepera II PC4
neural data read from file A~
2. Closed-loop runs with actual robot, and loopback Wiftdows 2000
connection (stimulation sites connected to ; . ST

recording sites)
3. Same as 2., with spike detection on PC3
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information
socisty|

¢ Closed-loop system
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