

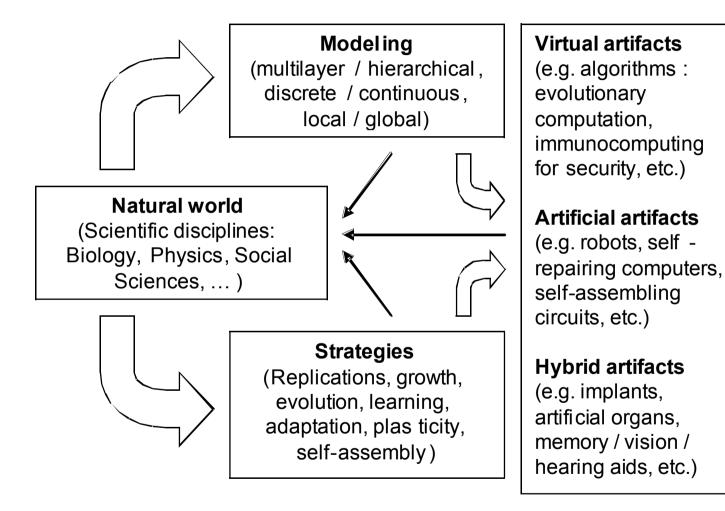
NiSIS Nature-inspired Smart Information Sys A Co-ordination Action (CA) under FP6 IST FET

16.01.2007 – Neuro-iT.net Workshop

Setting the Scene

- ERUDIT Fuzzy Reasoning (NoE 94-00)
- EUNITE Intelligent Technologies (NoE 01-04)
- NiSIS Learning from Nature (CA 04-07)

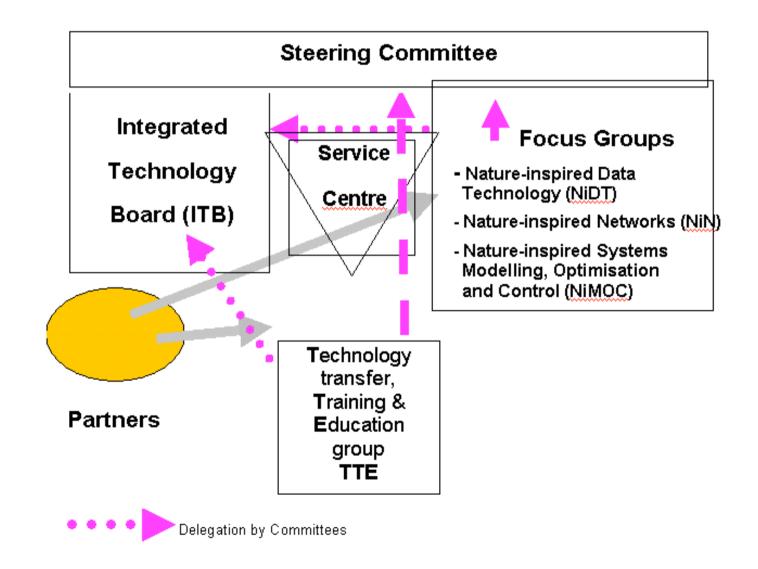
To co-ordinate multi-disciplinary studies and resear endeavours into the development and utilisation (intelligent paradigms (bio, social,...) in advanced inforr systems design.


Main Objectives

- Progress adaptive systems beyond curiosity
 - Improve robustness via modularity, hierarchy etc.
 - Embed systems dynamics understanding into intellig structures
 - Encourage cross-disciplinary team-based thinking
 - Develop a Strategic Roadmap
 - Provide Training, Education and Technology Transfe
 - Encourage young researchers
 - Cross-link to other relevant groups

Inspiration from Nature

NiSIS



BTH – NiSIS Cooperation

NISIS

Components in the Management Structure

Nisi

Focus Groups

NiDT Nature-inspired Data Technology

NiN Nature-inspired Networks

Chair: Davide Anguita University of Genoa Italy Davide.Anguita@unige.it Chair: Trevor Martin University of Bristol UK Trevor.Martin@bristol.ac.uk NiMOC Nature-ins Modellin Optimization &

> Chair: Reinhard C Hans-Knoell Insi Germany Reinhard.Guthke@hł

ITB Integration Technology Board

Chair: Derek A. Linkens University of Sheffield UK

D.Linkens@sheffield.ac.uk

SIS NiSIS

NiN: Types of network & problems

- fixed phone, transport, supply / distribution, internet
- ad hoc wearables, sensors, vehicles, process models, social
- mixed mobile phone, wireless-fixed, markets
 - routing, robustness, resource allocation, capacity, autonomy (self repair, self control forecasting / diagnosis, efficiency, security, volatility, dynamic behaviour
- information networks content focus
 - location, access, extraction, distribution, data quality, fusion, hyperlinks (text/vic recommenders, visualisation, clustering
- self-constructing networks cell interactions
 - where does adaptation come from?
 - how to classify and model dynamic networks (graph theory)
 - how do "regulations" affect outcome?
 - How to design networks to achieve a desired behaviour

NiN: Nature - inspiration

- disease transmission epidemic
- ageing
- genetic programming, genetic algorithms, etc
- search ant colony methods
- learning reinforcement, Bayes nets
- adaptivity / self-organisation
- neural nets, agent-based systems
- swarm intelligence, flocking
- emergent properties (e.g. cellular automata) global vs local behaviour
- multi-scale similarities
- multi-function components organism development, information networks
- economic systems regulatory systems
- organisational adaptation, social networks

NiMoC: Contribution of life sciences advanced information systems

NiSIS

- Network architectures
- Modularisation
- Hierarchical structure

Already established in IT

- Repair
- Spatial organisation compartimentation domains multi-functionality of protein complexes structure - function relationships

Potential for novel feature and applications in IT

NiSIS

Living cells perform

Biochemical reactions

- Catabolic reactions
 - Conversion of substrates into small molecules
 - Generation of free energy
- Anabolic reactions
 - Biosynthesis of complex molecules
 - biocatalytic entities
 - structural elements
 - storage substances

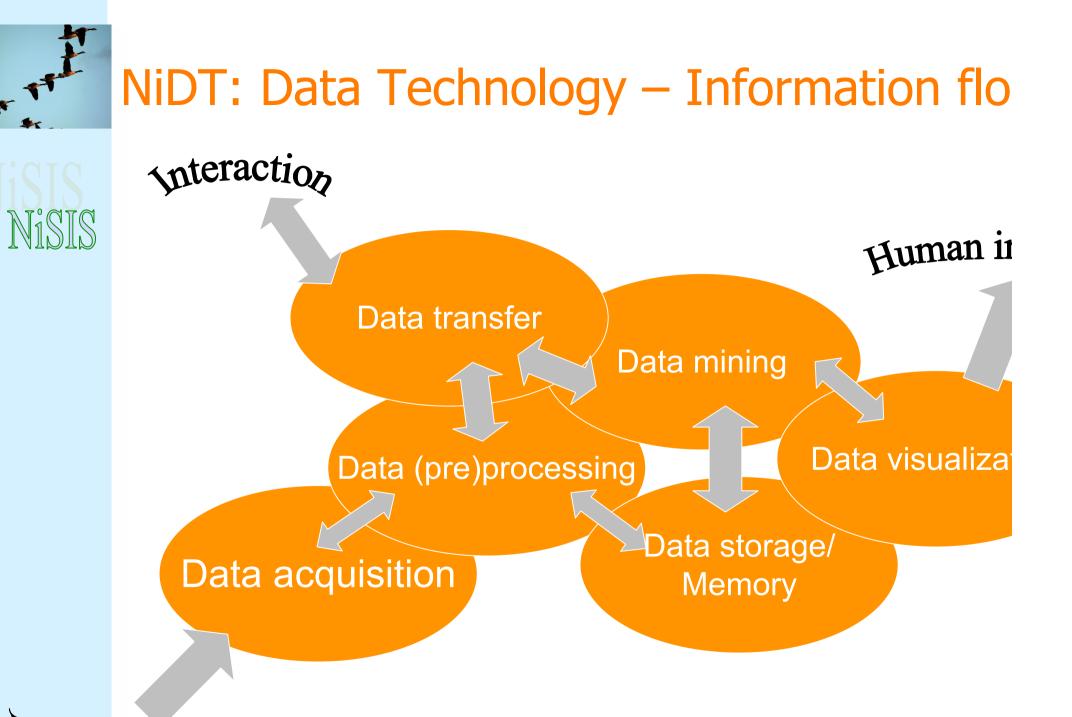
Information processing

Regulatory networks

- Control of chemical read
- Temporal and spatial coordination of reaction

Signal transduction networks

- Communication with environment and other ce
- overcome starvation (exogen and endogen)


Spatial organisation of indidua reactions - compartiment

NiDT: Problems related to Data Technolo

- NISIS Missing / partial data
 - Noisy / uncertain data
 - Heterogeneous data
 - High dimensionality
 - Spatial and temporal issues (e.g. delays)
 - Hierarchy / structure
 - Representation / Coding
 - Compression
 - Data flooding

Task Forces

The following Task Forces have been executed during October 2005 - September 2006 and final repo will be available soon:

NISSPI – Nature-inspired Self healing Soft Sensors for Process Industry	The origin of adaptability in natural networks	Nature-inspired Cooperative Strategies for Optimization
Leader: Berendsen, Monika	Leader: Monk, Nicholas	Leader: David Pelta
Nature-inspired Monitoring and Control	Potential Nature-inspired Aspects in Information Networks	NICOLE – Nature-inspired Combinatorial Machine Learning
Leader: Bayer, Karl	Leader: Nürnberger, Andreas	Leader: Anguita, Davide

The following new Task Forces have been accepted and started on 01 October, 2006:

Multitasking of Liver Tissues	Physically-inspired Artificial Learning Models (PIALM)	Sparking New Ideas through Brain-like Association Networks
Leader: Sebastian Zellmer	Leader: Dymitr Ruta	Leader: Michael R. Berthold
Immune System-inspired Health Monitoring of Machinery using the Danger Theory	Nature-inspired Methods for Local Pattern Detection	Nature-inspired Robustness
Leader: Jens Strackeljan	Leader: Thomas Seidl	Leader: Rüdiger Brause

www.nisis.de

